Nitroxide-labeled pyrimidines for non-covalent spin-labeling of abasic sites in DNA and RNA duplexes.
نویسندگان
چکیده
Non-covalent and site-directed spin labeling gives easy access to spin-labeled nucleic acids for the study of their structure and dynamics by electron paramagnetic resonance (EPR) spectroscopy. In a search for improved spin labels for non-covalent binding to abasic sites in duplex DNA and RNA, ten pyrimidine-derived spin labels were prepared in good yields and their binding was evaluated by continuous wave (CW)-EPR spectroscopy. Most of the spin labels showed lower binding affinity than the previously reported label ç towards abasic sites in DNA and RNA. The most promising labels were triazole-linked spin labels and a pyrrolocytosine label. In particular, the N1-ethylamino derivative of a triazole-linked uracil spin label binds fully to both DNA and RNA containing an abasic site. This is the first example of a spin label that binds fully through non-covalent interactions with an abasic site in RNA.
منابع مشابه
Purine-Derived Nitroxides for Noncovalent Spin-Labeling of Abasic Sites in Duplex Nucleic Acids.
A series of purine-based spin labels was prepared for noncovalent spin-labeling of abasic sites of duplex nucleic acids through hydrogen bonding to an orphan base on the opposing strand and π-stacking interactions with the flanking bases. Both 1,1,3,3-tetramethylisoindolin-2-yloxyl and 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) were conjugated to either the C2- or C6-position of the purines, ...
متن کاملNoncovalent and site-directed spin labeling of duplex RNA.
An isoindoline-nitroxide derivative of guanine (Ǵ, "G-spin") was shown to bind specifically and effectively to abasic sites in duplex RNAs. Distance measurements on a Ǵ-labeled duplex RNA with PELDOR (DEER) showed a strong orientation dependence. Thus, Ǵ is a readily synthesized, orientation-selective spin label for "mix and measure" PELDOR experiments.
متن کاملSite-directed spin-labeling of nucleic acids by click chemistry: detection of abasic sites in duplex DNA by EPR spectroscopy.
This paper describes a spin label that can detect and identify local structural deformations in duplex DNA, in particular abasic sites. The spin label was incorporated into DNA by a new postsynthetic approach using click-chemistry on a solid support, which simplified both the synthesis and purification of the spin-labeled oligonucleotides. A nitroxide-functionalized azide, prepared by a short s...
متن کاملNoncovalent and site-directed spin labeling of nucleic acids.
Electron paramagnetic resonance (EPR) spectroscopy is widely used to study free radicals or paramagnetic centers associated with biopolymers. With the advent of pulsed EPR methods, which allow accurate distance measurements between 20 and 80 , structures of biopolymers have increasingly been interrogated by this technique. Some of the advantages of EPR spectroscopy over other structural techniq...
متن کاملBase-specific spin-labeling of RNA for structure determination
To facilitate the measurement of intramolecular distances in solvated RNA systems, a combination of spin-labeling, electron paramagnetic resonance (EPR), and molecular dynamics (MD) simulation is presented. The fairly rigid spin label 2,2,5,5-tetramethyl-pyrrolin-1-yloxyl-3-acetylene (TPA) was base and site specifically introduced into RNA through a Sonogashira palladium catalyzed cross-couplin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Organic & biomolecular chemistry
دوره 12 37 شماره
صفحات -
تاریخ انتشار 2014